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 Executive summary

Machine intelligence (MI) permeates many industries, bringing significant revenue 
creation and cost savings potential. To date in insurance, MI has yielded returns in 
areas such as customer analytics and claims processing, based mostly on machine 
learning (ML) technology. The scope for industry gain is farther reaching. Among 
others, MI can help insurers more efficiently process text from contracts, documents, 
email and other online communications tools, and to analyse the massive data sets 
becoming available from the digital economy and accumulated from Internet of 
Things (IoT) devices. Insurers can use this information to better design, price and 
distribute protection covers, and extend their reach into new markets. 

Conventional MI approaches such as generalised linear models have become 
standard tools in insurance for risk assessment and prediction models. Even so, 
these tools typically only facilitate fragmented, narrowly-focused productivity. 
Enterprise-scale transformative benefits could be delivered with more investment in 
data engineering. This focus on data engineering is also necessary to realise the 
enterprise-wide potential of more advanced ML and artificial intelligence (AI). Early 
adopters of such approaches are seeing positive results in select areas like faster 
claims settlement, more targeted cross- and up-selling, and better risk scoring. The 
foundational technologies necessary to perform MI tasks continue to develop rapidly 
as algorithms become easier to use and cheaper. As a consequence, we expect that 
some processes currently profitable with conventional MI may well be supplanted by 
new ML and AI approaches unlocking new growth trajectories.

Beyond such progress, however, enterprise-wide deployment of MI-enabled systems 
in insurance remains a long way off. In an overview of survey data, we found that less 
than 10% of firms in all sectors have managed to scale MI pilots for roll out across 
multiple processes. Primary reasons include data availability and quality. Many ML 
and AI approaches require large amounts of high-quality data to train algorithms. 
Even conventional MI is hampered by data quality. Today, many areas of interest in 
MI are working with data sets that are not complete, clean or timely. This further 
affirms the importance of data engineering. Without said capabilities, the 
performance of models/algorithms has proven to be slow and expensive relative to 
existing human-centric processes. If deployed correctly, the models/algorithms can 
deliver substantial return on investment but to date they have not been in a ready-
state for enterprise-scale rollout. COVID-19 has forced consumers and businesses to 
become more digitally active. This has accelerated the need to shift to more digitally-
oriented business models, further affirming the value of transformative MI.

In recent years, the issues around data quality and curation have led to development 
of new approaches, such as reinforcement learning and ensemble modelling. So-
called hybrid models/algorithms based, for example, on a combination of knowledge 
from physics and ML, and causal-inference approaches, are less sensitive to data 
quality and compute power inadequacies. These are just two areas of innovative 
research seeking to address specific performance and model-interpretability issues, 
yielding solutions that could be a new part of future MI applications in insurance.

All told, MI viability is typically assessed on the basis of small-scale proof-of-concept 
pilots of models/algorithms. That's not enough. A more holistic view is required 
because more often than not, deployment failure can be attributed to organisational 
constraints, not model problems. The criteria to evaluate a new process should 
include integration of direct (development and running) and indirect (organisational 
and opportunity) benefits and costs. While chief data officers and scientists have 
become common-place at insurers, inchoate firm-wide data strategies and 
inadequate underlying technology hinder their effectiveness. System design, 
deployment plans and success criteria should focus on business workflow context, 
decision support and enterprise productivity. Regulatory risks regarding tech-linked 
innovation in insurance, in particular around data privacy and use, also need to be 
considered. Importantly, an MI project also needs clear and understandable 
communications across all facets, to secure senior management buy-in and funding.

MI offers significant revenue and 
cost-saving potential.

Conventional MI methods are already 
standard in certain areas of the 
insurance value chain. They could be 
superseded by more advanced 
approaches.

Enterprise-scale deployment of 
MI-enabled systems remains elusive, 
however.  

Issues around data quality and 
curation are generating interest in new 
areas of MI potential. 

It's not just models that matter. A 
range of issues influence success in 
roll out of MI-enabled systems at 
enterprise scale. 
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Glossary: key machine-learning terminology

 Term Description

Algorithms A list of computer-implementable instructions.

Machine 
intelligence

A collection of programs and processes that enable a machine (eg, computers) to apply data and 
information to solve problems.

Conventional 
curve fitting

A basic form of MI (eg, generalised linear models). These rely on assumptions to understand how 
variables relate to each other, with the aim of creating a curve that best-fits the relationship between 
data points. Conventional curve fitting can capture some types of non-linear relationships, also.

Machine learning 
(ML)

Algorithms that learn from data and analyse more complex, inter-related and non-linear relationships 
among variables. Commonly used in classification, regression and pattern recognition.

Artificial 
intelligence

AI goes beyond ML by facilitating adaptive application of understanding. With these algorithms, 
machines can store and apply learning flexibly, including to contexts not originally intended.

Supervised 
learning

To train a machine using data which are labelled, ie, already tagged with the correct answer. These 
labelled data act as supervisor. The machine infers relationships from this sample, which are used to 
map new examples.

Unsupervised 
learning

Unsupervised learning is used when labelled data are not available. With no teacher to train the 
machine, it has to discover hidden structures in the unlabelled data on its own. Used for clustering and 
association.

Clustering and 
association

A clustering algorithm seeks to discover inherent groupings in the data, eg, grouping policyholders by 
purchasing behaviour. An association problem is when an insurer looks to find out rules that describe 
the data, eg, policyholders that buy X policy also tend to buy Y policy.

Reinforcement 
learning

Goal-oriented algorithms (agents), which answer the question, how can this be optimised? Eg, how 
can marketing investment be optimised to extract maximum ROI? Learns by interacting with its 
environment.

Ensemble learning Uses multiple algorithms in combination to obtain better predictive performance than could be 
obtained from any one of the algorithms alone.

Data engineering Data engineering is the process of collecting, curating, storing, and transforming data for analytical 
purposes.

Deep learning Imitates the human brain to learn without human supervision, with data that is unstructured and 
unlabelled.

False positive A prediction which wrongly indicates that a particular condition or attribute is present.

False negative A prediction which wrongly indicates that a particular condition or attribute is absent.

Physics-based ML Machine learning that incorporates a model (eg, hydrodynamic) built using a valid scientific theory 
based on physical systems understanding into an ML algorithm/process to provide more structure to 
the model than would be the case for a less constrained ML model (eg, supervised or unsupervised 
learning.) This hybrid approach is often easier to interpret and diagnose.

Generative 
adversarial 
networks 

Generative adversarial networks (GANs)  involve learning patterns in data so that the model can 
generate new examples that seem credible enough to belong to the original dataset. The original data 
and the generated data can then be played off each other in the context of competing neural networks 
to develop better models.

Causal inference Causal inference in ML refers to approaches that provide more structure for control and prediction by 
building capabilities that identify actual drivers of outcomes to make an ML process more robust to 
changing circumstances, eg, attempting to sort out causal drivers of obesity to distinguish what can 
be controlled across different sub-populations or analysing what design choices lead to more clicks on 
a website.

Source: Swiss Re Institute
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Machine intelligence: establishing a 
common understanding

Information and data processing 
Machine intelligence (MI) is often used as a synonym for artificial intelligence (AI), a 
term for which common understanding is equally variable and/or vague. To establish 
a consistent reference understanding for the purposes of this report and public 
debate, we define MI as a collection of programs and processes that enable a 
machine (most often computers) to apply data and information to solve problems. In 
most cases, human intervention is required to make the MI-enabled process useful. 
We include the following categories within this umbrella definition of MI: 

 ̤ Conventional curve-fitting or traditional statistical approaches, such as 
generalised linear models (eg, linear or logistic regression). These approaches rely 
on assumptions to understand how variables relate to each other, with the aim of 
constructing a curve or mathematical function that best fits the relationship 
between data points. Note that conventional curve fitting can capture some types 
of non-linear relationships, also.

 ̤ Machine learning:  Algorithms that learn from data and analyse more complex, 
inter-related and non-linear relationships among variables. Commonly used in 
classification, regression and pattern recognition. 

 ̤ Artificial intelligence goes beyond ML by facilitating adaptive application of 
understanding. In AI, algorithms mirror human-like qualities such as the ability to 
respond to contextually ambiguous situations. With these algorithms, machines 
can store and apply learnings flexibly, including to contexts not originally intended. 
In this vein, more advanced AI is sometimes called neuromorphic or cognitive 
computing. Some newer AI appear to reflect new kinds of networked intelligence 
called hive intelligence.

Conventional curve-fitting, ML and AI can be independent and interdependent. As 
Figure 1 shows, AI typically incorporates both ML and conventional curve-fitting 
methods. Within ML, supervised learning has seen widespread adoption. Here 
human intelligence is used to embed each piece of sample data with meaningful 
tags that help an algorithm understand the data. Unsupervised learning is the 
method used when labelled data are not available, such as to detect data clusters 
(eg, in insurance to group policyholders by purchase behaviour) or anomalies (eg, 
fraud detection, in partnership with human claims experts).1

Reinforcement learning (RL) exhibits more adaptivity and has been successfully 
applied in augmented reality tools such as in gaming.2 However, the field is still in 
early stages of development in other sectors. RL algorithms are not restricted to 
existing data, but search out optimised solutions based on rewards or penalties 
related to each action taken. RL can be combined with simulations and data 
augmentation to compensate for incomplete, messy, non-stationary or biased data.

1 A key task is to detect any specific grouping or clustered behaviour in the observed data.
2 Reinforcement learning is an area of machine learning concerned with how software agents ought to 

take actions in an environment in order to maximise the notion of cumulative reward.

Machine intelligence (MI) is an umbrella term covering a range of data processing and manipulation techniques, from 
conventional logistic regression to sophisticated deep learning. The more advanced MI are generally categorised as 
machine learning (ML) and artificial intelligence (AI). Today, conventional techniques can be more easily scaled up to 
augment existing processes. However, in recent years there has been exponential growth in the ease of use and 
effectiveness of algorithms, and more sophisticated ML and AI could eventually supplant conventional approaches.

MI encompasses programs and 
processes that use data to enable a 
machine to solve problems.

ML and some kinds of AI are more 
complex analytical approaches to data 
processing.

Newer types of ML are still in early 
stages of development. 
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Machine intelligence: establishing a common understanding

The objective of MI, particularly when deployed in enterprises, is to supplement or 
emulate human deduction, reasoning and problem solving. An MI-enabled solution 
can be more successful and transformative when based on a conventional approach 
like logistic regression, even if ML or AI models, given the greater number of 
variables they can analyse, perform better in predicting outcomes. This is because 
the conventional model can be more easily scaled-up to augment existing processes 
in an organisation. Figure 2 ranks different MI techniques in terms of complexity 
criteria: interpretability of model results, ease of implementation, stability of models 
to changes in data, and execution speed. These factors determine success of MI 
solution deployment. We expect that as algorithms become faster and cheaper, 
more sophisticated ML and AI models could supplant conventional methods.

Figure 1 
Schematic showing overlapping 
areas within machine intelligence

 Source: FSB, Swiss Re Institute
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Conventional MI models can be 
more easily scaled-up to augment 
existing processes in a firm.

Figure 2 
Complexity spectrum of different categories of MI

 
 High Low

*Certain approaches/algorithms may be better or less suited than others for solving certain problem types
Notes: Interpretation refers to algorithm transparency and explainability. Implementation refers to effort required to develop algorithms and 
the volume and complexity of data needed to train models. Stability refers to sensitivity of performance to change in data and assumptions. 
Execution speed refers to time to complete end-to-end execution, starting from data ingestion to final results.
^ Bidirectional encoder representations from transformers (BERT) is a substantial improvement on natural language processing (NLP). CNNs 
are convolutional neural networks; RNNs are recurrent neural networks; GANs are generative adversarial networks. 
Source: Swiss Re Institute

Complexity Approaches/Algorithms* Interpret-
ation

Implement-
ation

Stability Execution 
speed

Category

Low Generalised linear models Supervised learning

Naïve Bayes classifiers Supervised learning

Instance-based learning Supervised learning

Support vector machines Supervised learning

Decision trees Supervised learning

Random forest Supervised learning

Gradient boosting Supervised learning

Deep learning (CNNs, RNNs, NLPs, BERT^ etc) Supervised/semi-supervised

Generative adversarial networks (GANs) Supervised/unsupervised/semi-supervised

Optimal classification trees Supervised learning

Reinforcement learning Reinforcement learning
High Ensemble learning Combination of techniques
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Beware the hype 
AI as a term was first coined in the 1950s. This technique has proliferated since then, 
interspersed with periods of reduced funding and interest (“AI winters”). There was a 
spike in interest in the early 1990s with the development of neural networks.3 
However, the new potential was not fully realised leading to another period of AI 
winter in the 2000s, which has only thawed in the last 10 years.

There has been notable progression in AI and ML capabilities in the last years due to  
improvements in processing power, developments in cloud computing, an explosion 
in data, and digital transformation. This has also led to, in our view, an unwarranted 
level of hype. For example, a 2019 study found that two-fifths of Europe's labelled AI 
start-ups that claim to use AI actually do not. And when they do, the AI use cases are 
often quite basic.4 In some instances, mention of AI and ML have been included in 
business pitches to improve chances of securing financing, although the level of 
sophistication of the AI being sold is still rudimentary.

Often technology spending tracks hype. According to estimates from International 
Data Corporation (IDC), spending on AI systems will reach USD 98 billion in 2023 
(a compound annual growth rate (CAGR) of 27% from 2019).5 These surveys do not 
necessarily reflect all MI spending, some of which gets lumped in with general IT 
budgets, so it is difficult to find a comprehensive estimate. Of late, many categories 
of MI have passed through the peak of inflated expectations (the hype), and some 
are falling into the trough of disillusionment.6 With respect to insurance specifically, 
not much has changed over the last 30 years. If anything, the industry has yet to 
enter the “slope of enlightenment”. 

3 A network of artificial neurons mimics the connections and associated responses of the human brain.
4 The State of AI 2019: Divergence. MMC Ventures, March 2019.
5 Worldwide Spending on Artificial Intelligence Systems Will Be Nearly USD 98 Billion in 2023, IDC, 

September 2019.
6 Hype Cycle for Artificial Intelligence, Gartner, 25 July 2019.

The evolution of AI has seen periods of 
very intense and lesser interest.

Figure 3 
MI development timelines

Source: Swiss Re Institute
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The periods of interest can also 
generate a certain level of hype.

Even so, indications are that spending 
on AI will grow strongly over the 
coming years.

https://www.stateofai2019.com/introduction/
https://www.idc.com/getdoc.jsp?containerId=prUS45481219
https://www.gartner.com/doc/3953603
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Machine intelligence: establishing a common understanding

Nevertheless, the foundational technologies necessary to facilitate successful 
enterprise-scale MI deployments continue to develop rapidly, as algorithms become  
faster, leaner and cheaper.7 The consequence will be that some enterprise processes 
that are profitable with conventional MI could suddenly become more so with newer 
MI (eg, ML and AI). Figure 4 (LHS)  shows what has been an exponential increase 
(see Y-axis) in efficiency of algorithms (eg, AlexNet, ShuffleNet) over recent years, far 
outpacing the rate of capability improvement according to Moore's law.8 For 
example, the processing performance of newer algorithms such as EfficientNet in 
2019 on a computer vision task far exceeds that of AlexNet in 2012.9 

We looked at a collection of surveys (see Figure 4 RHS) and found that some 
enterprises (less than 10%) have managed to build on successful pilots to deploy MI 
in multiple processes across the organisation. Enterprise-wide transformative MI 
demands initial investment in digitising firm-wide operations. This will lay the 
foundation for firms to (1) apply MI to automate processes; and (2) introduce new 
offerings by cutting across company-wide silos to integrate data. Examples of 
advanced deployments include MI-native digital-first platforms/firms like Uber and 
Airbnb. Also included are firms that started off with traditional technology (eg, 
Microsoft, Amazon) but have since invested heavily in MI capabilities.10 Firms in 
more traditional sectors like financial services (including insurance) are playing catch 
up. To reap large-scale benefits from MI, they first need to digitise operations and 
break down data silos. We expect to see progress in this direction over the coming 
decade.

7 A. Agrawal, J. Gans, et.al, Prediction Machines: The Simple Economics of Artificial Intelligence, 2018.
8 According to Moore's Law, the speed and capability of computers increase every two years.
9 By 2020, with more efficient algorithms, it took 44x less compute power than in 2012 to train a neural 

network to the level of AlexNet. Over the same time span, Moore's Law yields 11x improvement.
10 AI from exploring to transforming: Introducing the AI Maturity Framework, Element AI, May 2020.

Exponential improvements in 
algorithm efficiency could make 
deployment of more advanced MI 
techniques more profitable.

Figure 4 
Increase in algorithmic efficiency (LHS) and progress in AI implementation (RHS)

Note: a teraflop refers to the capability of a processor to  
calculate 1 trillion floating-point operations per second.
Source: D. Hernandez, et.al. Measuring the Algorithmic Source: Swiss Re Institute (based on multiple surveys, data anonymised, 
Efficiency of Neural Networks, 2020 standardised and rescaled to make them comparable).
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To date, digital-native firms have been 
the most successful in transformative 
MI deployment.

https://www.elementai.com/news/2019/exploring-to-transforming-introducing-the-ai-maturity-framework


Swiss Re sigma No 5 /2020 7

Machine-intelligence system 
implementation

Criteria for success
When companies think about MI-enabled systems, there are many things to 
consider: which MI tools to implement; how to address constraints arising from 
legacy systems; where to find staff to resolve capability deficits; and how to secure 
more benefits than costs. Table 1 presents four overriding criteria we recommend 
companies should consider as they prepare for MI-related technology adoption. 

Long-term return on investment
To secure positive return on investment (ROI) from spending on MI-transformation of 
end-to-end processes across a firm over the long-term, factors to consider include:

 ̤ Net benefits from workflow transformation vs recurring costs: The benefits 
from the transformation exercise in terms of reduced cost, increased revenue and 
new business opportunities must be greater than the costs of organisational 
integration, both direct (development and running) and indirect (organisational 
and opportunity costs). In a recent survey, 93% of respondents at US insurers 
going through MI transformation expressed concern around the costs of 
implementation and ROI.11 Many ROI calculations look only at the cost of vendor 
solutions, not the added costs to the business (eg, data curation, training, etc). 
Further, ROI is an ongoing calculation as new inputs (eg, regulation and changes 
in costs of key data) can render initial cost/benefit estimates inaccurate. Figure 5 
presents key cost/benefit considerations for deployment of such systems.

11 State of Artificial Intelligence and Machine Learning in the Insurance Industry Study, LexisNexis® Risk 
Solutions, 3 December 2019. 

MI applicability and implementation are not uniform across industries. Successful implementation is dependent on 
data availability, interpretability, system complexity and regulation. Implementations require a strong business case, 
competent system architects and developers, supportive regulations, committed management, and an enterprise-wide, 
production-ready data strategy. In a post-COVID-19 lower growth environment, ROI will be a key consideration as 
analytics projects are evaluated. Investment in data engineering capabilities is critical for successful deployments.

Things to think about include...

Table 1 
Criteria for successful implementation of enterprise-wide MI for the long term

Source: Swiss Re Institute

Criteria for success Present inadequacies What successful projects look like

Long-term positive 
ROI for  end-to-end 
processes

Underestimation of implementation costs, poorly 
designed MI-ready workflow processes, 
scalability difficulties arising from poor planning

Workflow process architecture matches 
deployed MI strengths, recurring costs detailed 
in implementation plan, integration questions 
prioritised, security and privacy built into 
planning from the beginning

Production-ready 
data strategy

Underinvestment in data ingestion and curation, 
lack of detailed data stewardship, insufficient 
number of data engineers.

Appropriate focus on data strategy, data 
engineering, data tools, and data modelling.

Use cases that fit 
business and 
regulatory contexts

Among others, use cases do not consider data 
constraints, and organisational issues that prevent 
MI from adding value.

Deployment leverages MI strengths in the 
context of existing organisation and workflow 
processes. Deployment plan includes clear 
match of MI and pain points, data and technical 
feasibility evaluated from the start.

Management 
commitment

Senior management not adequately briefed on 
proposed MI-enabled deployment, poor 
implementation by frontline staff, poor 
coordination and buy-in among business units, 
and shallow understanding of MI operations.

Regular and detailed updates to management, 
willingness to change the process to 
accommodate new findings, and ongoing 
investment and talent continuity to extract value.

...return on investment.

https://www.prnewswire.com/news-releases/new-insurance-research-report-from-lexisnexis-risk-solutions-highlights-the-state-of-artificial-intelligence-and-machine-learning-in-the-insurance-industry-300967697.html
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Machine-intelligence system implementation

 ̤ Performance and efficiency of re-engineered end-to-end processes: MI 
implementation must be scrutinised in technological terms and with respect to 
business drivers and constraints. For example: (1) a new MI-enabled process 
should be at least as accurate and robust as the current process, and more time 
efficient; and (2) the new process should generate new and sustainable business 
opportunities. At times, the cost expectations of realigning human resources to 
accommodate forecast benefits may not be realistic. For example, anecdotal 
evidence suggests that ML fraud detection systems sometimes flag far more new 
cases than existing staff can verify. Measurement metrics must be tied to realistic 
business outcomes rather than mere model performance.

 ̤ Investment needed to maintain system quality and robustness: A key 
criterion for success of MI-enabled systems is an effective continuous monitoring 
framework for model lifecycle management. Model development – even for most 
advanced MI – is often the more straightforward and less costly aspect of 
enterprise MI deployment. Integrating a new MI system into an organisation, on 
the other hand, will likely require workflow process re-engineering and constitute 
most of the system deployment costs. Further, maintaining the integrity, security 
and privacy of a new system will require a large budget at first (although for well-
architected systems these running costs should decrease over time). 

 ̤ Exception handling: In the post COVID-19 environment, models may give 
unexpected results due to major shifts in consumer behaviour, data inputs and the 
way businesses are run. However, the renewed emphasis on digitalisation will 
create more and diverse data sets to further refine MI-models, and widen the 
scope of training information available to better exception handling capabilities. 
On the other hand, companies  already investing heavily but facing cost pressures 
may now prioritise projects more carefully and continue with projects that already 
deliver positive ROI or are close to doing so. Several areas will continue to see 
greater attention and investment, including automation and fraud detection 
capabilities.

Figure 5 
Cost/benefit considerations for deployment of MI-enabled systems

Source: Adapted from V. M.  Megler, Managing ML Projects, Balance Potential with the Need for Guardrails, February 2019

Financial model build: 
For example, a model with 
anticipated ROI is available 
for review

Potential upside return: 
eg, Increased customer 
retention of 5%. Decreased 
cost per transaction of 5%

Potential downside risks: 
eg, decreased customer 
retention (10%). Increased 
cost per transaction (5%)

Worst-case downside: 
eg, Automated claims 
processing crashes or does 
not filter fraudulent claims

Liability: eg, Automated 
underwriting system does 
not capture the risk accurately

Cost of building model: 
eg, six months for a team of 
two data scientists

Cost of maintaining model: 
eg, 10 hours a month

Quality of predictions vs 
expectations: eg, model 
assumes 100% correct 
predictions, but results 85%

Uncertainty in model 
predictions: eg, prediction 
might be accurate +/–10%
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Production-ready data strategy
Often, deployment fails because of poor data engineering. In an end-to-end 
enterprise process, low-quality algorithms with high-quality data engineering will 
tend to outperform high-quality algorithms with low-quality data engineering. In 
financial services, firms typically start off with developing an algorithm and then 
under-invest in data engineering. For transformative impact enterprise wide, they 
should do the reverse. Figure 6 presents findings from a recent survey on the low 
maturity levels of insurers in terms of accessing and curating data for AI models.12

Some of the most innovative AI under development (eg, reinforcement learning and 
ensemble modelling) can be robustly trained without extensive high-quality training 
data. In these cases, systems use simulations, data augmentation algorithms and 
synthesise subject-matter expertise.13 However, these new approaches are not yet 
ready for enterprise scale and nearly all successful MI-enabled system deployments 
still depend heavily on data quality and quantity. Here, the capacity and tools 
available today to process structured and unstructured data open new doors of MI-
related opportunity. To optimise the potential, a firm-wide data strategy and system 
architecture such as represented in Figure 7, is essential. The lack of said strategies 
and architectures hamper the effectiveness of the also critical newly-created CDO 
roles. For example, in a recent survey, less than 10% of CDOs across industries said 
they are able to measure the financial value of their information and data assets.14

12 Survey with senior decision-makers at large organisations in the US and Canada. See Element AI, May 
2020, op. cit.

13 Integrating subject matter expertise in this way reflects a Bayesian updating approach to ML or AI in the 
sense that subjective priors are incorporated into the algorithm to reduce the scope of evaluated 
parameter space, which can counteract (assuming the priors are sound) data inadequacies.

14 Gartner Survey Finds Chief Data Officers Are Prioritizing the Right Things, But Higher Strategic Focus 
Is Required, Gartner, 10 June 2019.

MI-enabled system performance 
materially depends on data-value-
chain management

Figure 6 
Data maturity of insurers

Source: The Five Dimensions of Enterprise AI, Element AI, May 2020, Insurance respondents only
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Begun to standardize data cleansing and 
consolidation accross the firm
Standard data cleansing and consolidation pipeline, with tools
Actively evolving data cleansing and 
consolidation, with automated tools

Lack of data strategies can detract 
from the effectiveness of  
newly-created CDO roles.

https://www.gartner.com/en/newsroom/press-releases/2019-06-10-gartner-survey-finds-chief-data-officers-are-prioriti
https://www.gartner.com/en/newsroom/press-releases/2019-06-10-gartner-survey-finds-chief-data-officers-are-prioriti
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For insurers investing in data architecture, a common characteristic of poor strategy, 
is duplicative data engineering across different teams. In these cases, data scientists 
rarely feel confident about a centralised curation process. In some cases, there is no 
centralised curation process, or none that the data scientists are aware of, leading 
them to create their own, often duplicative, processes. IDC found that data 
professionals spend 67% of their time searching for and curating data.15 In another 
insurance specific survey, nine out of 10 employees at the 100 largest firms in the 
US said that managing increased volumes of data was their number one challenge.16

In our view, a centralised data ingestion and curation capability can generate sizable 
ROI by overcoming such inefficiencies. This is an area where insurers in particular, 
have a long way to go. A recent survey found that as many as 75% of insurers lack a 
taxonomy to harmonise different types of data.17 Most also do not have 
comprehensive data ontologies that define multi-dimensional relationships among 
the classified data in a data taxonomy (or in multiple taxonomies), an issue that is set 
to become more complex as data sources grow in number and diversity.

Factors to consider for best-fit use cases
Successful MI-enabled implementations require matching of desired outcomes with 
the best-suited enterprise-ready algorithms and techniques. Not every algorithm 
works for every use case, and many failed implementations arise from a mismatch of 
algorithms to use case. Well-calibrated traditional statistical methods can offer 
similar results in terms of accuracy to advanced models, suggesting that data quality 
matters more than algorithmic innovation. Importantly, business use case and data 
availability should drive technique selection. Even with best efforts to match 
technique to use cases, a trial and error process ensues as different techniques are 
implemented and tested to determine which approach works best. Over time we 

15 End-User Survey Results: Deployment and Data Intelligence in 2019, IDC, November 2019, sourced 
from “Talend Accelerates Path to Revealing the Intelligence in Data”, 27 February 2020.

16 LexisNexis® Risk Solutions, op. cit.
17 Building New Data Engines for Insurers, BCG, 5 November 2018.

Figure 7 
MI-data strategy schematic

Source: Swiss Re Institute
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Data engineering is often duplicated 
across functions.

Insurers also lack comprehensive data 
ontologies that define relationships 
among data.

Many failed implementations arise 
from a mismatch of algorithms to use 
case.

https://www.prnewswire.com/news-releases/talend-accelerates-path-to-revealing-the-intelligence-in-data-301012360.html
https://www.bcg.com/en-ch/publications/2018/building-new-data-engines-insurers
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expect consensus to develop with respect to which techniques work best with 
specific use cases. Factors to consider when matching technique/use case include:

 ̤ Interpretability: Questions to ask include: How much does the business need to 
understand? How much would it normally understand? What are the regulatory 
requirements and professional standards? In insurance, about a third of firms that 
have adopted MI are concerned that if regulators do not understand newer 
techniques, they could block or limit efforts to use new applications.18 Also, 
depending on use case, firms may be required to be transparent to both regulators 
and customers. Typically, a high degree of model/process transparency is 
required, and the line between collecting data to improve service and 
compromising privacy is very thin. Getting the balance right can impact funding. 
Gartner forecasts that by 2022, projects will be twice as likely to receive funding if 
they have built-in transparency.19

 ̤ Use case selection should consider the costs of different errors: While 
models process large volumes of data rapidly, they can also lead to relaxed human 
oversight. Each error has a cost, and management must decide on acceptable 
levels of error tolerance to identify the point at which economic value can turn 
negative. In some use cases, all types of errors may have an equal impact, but in 
others one can prove more costly (eg, if a self-driving car ignores a pedestrian or an 
automated credit evaluation system extends credit to a company that later 
defaults). At other times, the cost of a false prediction may be greater than the 
savings associated with a true prediction. For example, an insurer looking to rapidly 
assess property claims using MI-based aerial image analysis may later have to 
increase reserves significantly because of non-visible damages (eg, under a roof). 
 
A false positive may prove less expensive in cross-selling campaigns (where the 
cost is a wasted email) than in underwriting or pricing (where the cost is accepting 
sub-standard risks). Table 2 demonstrates this trade-off in two scenarios: 1) 
propensity to buy in a cross-selling campaign; and 2) classifying a critical illness 
(CI) risk for underwriting decision. In cross-selling, the cost of approaching an 
unwilling prospect based on a less accurate propensity to buy prediction (false 
positive) is far lower (eg, USD 10) than the false-positive in the underwriting of a CI 
policy, when a risk classified as good is actually bad (eg, USD 1100).

18 LexisNexis® Risk Solutions, op. cit.
19 Can learnings from early projects give CIOs a head start with AI technologies?, Gartner, 9 February 

2018.

Table 2 
Assessing the impact of error costs

Note: This is a simplified illustration and may not capture all possible scenarios.
Source: Swiss Re Institute

Propensity 
to buy

Predicted 
(unlikely to buy)

Predicted 
(likely to buy)

Actual 
(unlikely to buy)

(True negative) 
3 000

(False positive) 
600

Actual 
(likely to buy)

(False negative) 
400

(True positive) 
 6 000

Critical illness  
classification

Predicted 
(Bad risk)

Predicted (Good 
risk)

Actual 
(Bad risk)

(True negative) 
3 000

(False positive) 
600

Actual 
(Good risk)

(False negative) 
400

(True positive) 
6 000

Cross-selling 
scenario

Number of 
predictions

Gain (Loss) per 
prediction in USD

Total gain (loss) 
in USD

True positive 6 000 100 600 000

False negative 400 Don’t approach –

False positive 600 (10) (6 000)

True negative 3 000 Don’t buy –

Total  10 000  594 000

Underwriting 
scenario

Number of 
predictions

Gain (Loss) per 
prediction in USD 

Total gain (loss) 
in USD

True positive 6 000 100 600 000

False negative 400 Don’t underwrite –

False positive 600 (1,100) (660 000)

True negative 3 000 Don’t underwrite –

Total  10 000  (60 000)

Low cost of error High cost of error

https://www.gartner.com/smarterwithgartner/lessons-from-artificial-intelligence-pioneers/
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Organisational maturity and willingness
Transformative MI deployments require much more than just model/algorithm 
development. Equally critical for success is a cross-functional, detailed strategy with 
senior executive sponsorship. An important part of the strategy is a focus on 
capability, in terms of technology, process re-engineering and staffing. An MI 
implementation workflow requires capabilities across data engineers, model 
engineers and software developers/IT operations (see Figure 8). It is also desirable 
to have staff with multiple skill sets who can translate requirements clearly across 
functions. In insurance, firms sometimes hire actuaries with programming skills to 
reduce miscommunication when actuaries hand over their models to development 
engineers without knowledge of statistics. 

Source: Swiss Re Institute

Transformative, successful MI 
deployment requires a cohesive 
strategy that explicitly includes details 
of necessary capabilities.

Figure 8 
MI implementation workflow

Source: Swiss Re Institute
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How things stand
The insurance industry has lagged in implementation of MI-enabled systems. Still, a 
2019 survey found that industry executives have high expectations about adopting 
ML in 2021. They were optimistic in the past too, with past surveys projecting high 
expectations for where they would be in 2019, although actual adoption last year 
was well below predictions.20 It also appears that insurers have become more vocal 
about MI. Figure 9 shows that mention of MI-related terms (eg, AI, ML and data 
science) in investor annual reports has risen significantly, from two citations in 2015 
to 116 in 2019. The growth in Insurtechs using AI/ML technology and MI-related 
patents filed by insurers in recent years mirrors this trend. 

Strong growth in insurance-related AI/ML patent filings
We analysed patent databases and found that the number of MI-related patents filed 
by insurers has increased since 2010. Focusing on the most prolific patent filers 
among insurers in the US, in 2018 and 2019 more than half were for motor business, 
some in the area of autonomous vehicles. As MI-enabled processes enter business-
critical vehicle systems, it expands demands for greater innovation in MI-enabled 
monitoring. For instance, many patent applications are for remote sensing, image 
processing and drone use for damage assessment.

20 Machine Learning: Today and Tomorrow, Willis Towers Watson, 25 February 2020.

Insurers continue to experiment with newer MI approaches to build upon (and possibly replace) conventional MI 
techniques that are becoming standard practice in areas like customer analytics and claims processing. However, 
unlike in sectors such as social media, end-to-end transformation of insurance processes through MI-enabled 
systems remains elusive. Data availability, model interpretability, and privacy issues remain barriers to large-scale 
adoption. The cost of errors in insurance can also be high. 

Insurance executives remain 
optimistic about MI.

Figure 9 
MI-related mentions in insurer investor reports (LHS), and trend in Insurtechs using AL/ML technology

Source: Annual reports of 30 leading insurers, CB Insights, Swiss Re Institute

Note: Insurtech start-ups with MI-related terms used in the
CB Insights company description. 
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MI-related patents filed by insurers 
have increased exponentially in recent 
years.

https://www.willistowerswatson.com/en-US/Insights/2020/02/machine-learning-today-and-tomorrow
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In terms of use cases, most MI patents in insurance have been for functionality 
designed to improve customer service, claims efficiency and reduce losses. Some 
were aimed at generating early warning signals, such as to alert drivers to pedestrian 
or cyclist presence, or to alert vehicle operators of malfunction. Both reduce claims 
frequency as well as severity. Comparing China and the US, patent filing 
concentration is high in both markets, according to the Google patent database. 
However, the number of MI-related patents filed between 2010 and 2019 was more 
evenly distributed in the US, with 10 insurers accounting for 80% of activity. In 
China, less than five insurers accounted for 85% of MI-related patents filed.

Already-live AI and ML application deployment in insurance
Conventional MI such as generalized linear models have become standard tools in 
insurance for risk assessment and prediction models. More recently, enthusiasm for 
a range of AI and ML techniques such as deep and reinforcement learning has led 
some insurers to run pilots. In a few cases, early adopters of AI and ML are seeing 
benefits in select areas, such as faster claims settlement, more targeted cross- and 
up-selling, improved fraud detection and better risk scoring.

 ̤ Modernising claims analytics: Much of claims processing is still manual. A 
number of insurers now have pilots in triaging, routing, validating and 
corresponding with third parties, the ambition being that some degree of 
automation will materially reduce the cost of claims processing.21 Simpler tasks 
like assessing high-volume losses and processing well-specified items are more 
likely to be successfully executed by MI-enabled systems. Areas where insurers 
report higher savings from MI include those where information is better 
structured, such as documentation in standardised formats. 

 ̤ Fraud detection and claims mitigation: ML techniques are well suited to use 
cases involving large classification of data and anomaly detection, such as fraud 
detection. Increasingly, insurers are evaluating and deploying ML-based fraud 
solutions that augment internal data with new sources of information, including 
third-party IoT and public data. Insurers are also using ML to create entirely new 
loss mitigation offerings, which can in turn lead to lower claims. Such is the 
thinking behind Direct Line's telematics programme, for example, which uses ML 
to identify individuals who need coaching to become better drivers.22 

21 “The challenge of full automation”, insuranceinsider.com, 2 April 2020. 
22 Direct Line Group saves young drivers over £50 million in motor premiums, Direct Line, 1 Feb 2019.  

Figure 10 
Growth (LHS) and composition of patents (RHS, 2018) at insurers

Source: Google Patent Database, Swiss Re Institute
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Most recent innovations have sought 
to improve customer service, claims 
and operations.

The use of some conventional MI tools 
is standard in insurance.

https://insuranceinsider.com/articles/132412/the-challenge-of-full-automation
https://www.directlinegroup.co.uk/en/news/company-news/2019/-direct-line-group-saves-young-drivers-over-p50-million-in-motor.html
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 ̤ Distribution channel optimisation: Another area where ML is seeing application 
is in agent recruitment and retention. Insurers have started using ML-enabled 
systems to identify individuals most likely to become successful producers. These 
systems can also improve producer-client matching. For example, Discovery does 
real-time, automatic matching of call centre agents to members with whom they 
are likely to have the highest affinity. The model has been operational since 2018 
and customers on calls where affinity was matched reported greater 
satisfaction.23

 ̤ MI in customer experience: MI has been deployed at enterprise scale in many 
social media and online retail contexts. Some insurers have sought to do the 
same, with the ambition to increase the effectiveness of targeted marketing. 
Despite early successes, insurers discovered that rushing out MI-inspired 
initiatives may not necessarily generate the desired outcome. For instance, 
anecdotal evidence suggests that targeted digital advertising based on previous 
interaction with a product can actually turn a customer off. This result suggests 
that MI models could benefit by using insights gained from behavioural 
economics to disentangle interaction effects.

 ̤ Underwriting: Given the level of confidence needed to deploy new technologies 
in underwriting, fully AI and ML-enabled underwriting systems still do not exhibit 
levels of accuracy necessary to be used at scale. This also means that MI cannot 
be relied on to completely replace risk assessments, except in simpler lines. This 
said, some examples related to supervised learning, can complement and or 
eventually replace parts of existing processes in insurance. These include smarter 
mechanisms for triage and routing, which may be more effective than current 
business rules, eg, triage between depths of investigation (full vs. simplified 
underwriting), safely waive additional evidence (lab tests, physician statements) 
or allocate referrals to the right level of seniority in the organisation (junior 
underwriter vs. medical officer).24

 ̤ Pricing: This is subject to regulatory approval, and the traditional approach 
involves fitting a GLM to historical claims and premiums. More accurate pricing 
models based on newer machine learning techniques cannot be put into 
production immediately, as results may be difficult to explain both internally and 
externally to regulators. There may also be other constraints to using the data like 
cost and lack of access to data. 

Inadequacies in existing implementations
The challenge to scale AI and ML models continues to hinder deployment of newer 
MI technologies at the enterprise level across core workflows in the insurance value 
chain. The following are processes where MI could potentially be implemented at 
scale and the associated still-existing obstacles that hold back broader adoption:

1.  Collecting and curating relevant structured and unstructured data. Here 
obstacles include data privacy regulations and incentives (eg, firms or agents 
unwilling to share relevant data), fragmented access processes, inadequate data 
usage contracts, and still-difficult to systematise data curation processes. 

2.  Assessing, understanding, and processing relevant input information. NLP 
techniques are still inadequate given the difficulties in interpreting tacit and 
subtle informational aspects, and data quantity and quality remain poor.

23 Insurance trend #1: Get to know me, EFMA, 14 November 2019.
24 What's new? The next wave of insurance automation complemented with new technologies, Swiss Re, 

25 November 2019.

Challenges to scale use of newer MI 
tools remain.

https://www.efma.com/article/detail/31954
https://www.swissre.com/risk-knowledge/risk-perspectives-blog/the-next-wave-of-insurance-automation.html
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3.  Underwriting approval and pricing: Intelligent automation integrating humans 
and machines is still a massive design challenge. Seasoned executives and 
underwriters do not trust algorithms given examples of “obvious” misses. 

4.  Monitoring risk portfolios and managing claims: Challenges to efficiency 
improvement remain in terms of creating lower-cost systems that have better 
false positive/false negative trade-offs than human-centric methods. Data 
processing architectures still treat data in “pools” rather than the “rivers” 
necessary to accelerate time between data collection and usage. Data not 
transitioned into actionable insights near immediately hinder MI-enabled system 
usefulness. 

5.  Improving capital allocation across liability segments: Prediction models still fall 
short in terms of reliably supporting better capital allocation. Data are incomplete 
and biased in many liability segments, and systems are still designed around 
current processes that are not MI-ready. 

Poor MI integration hinders system deployment potential
System design and management often fall short when insurers attempt to implement 
MI into existing cross-functional processes. Too few resources are dedicated to 
integrating models and algorithms into workflows, leading to poor cross-functional 
coordination. In an interview with Swiss Re Institute, one insurer seeking to eliminate 
unnecessary underwriting questions said it leveraged banking transaction data to 
offer accelerated underwriting to prospects. The MI-enabled underwriting model 
performed well in classifying individuals into standard and sub-standard risks. The 
marketing department, however, did not invest in a propensity-to-buy exercise nor 
modify its sales process, which nullified the benefit of the system. 

Another challenge is that new data (especially collected from wearables) for 
underwriting and pricing purposes may not necessarily lead to more accuracy in  
underwriting (See Figure 11). For example, tracking the number of steps one walks 
may not materially improve one's health. In many cases, the outcome is the opposite: 
an individual who walks more may also think he/she has license to eat more because 
he/she is fitter. To this end, there has been a tendency to over-estimate the extent to 
which collecting and crunching these data actually changes risk profiles. The 
industry will struggle to adopt IoT data without a clearer understanding of how these 
insights on behaviour correlate with actual risk experience. 

Poor integration of MI-enabled 
systems across processes can hurt 
project outcomes.

Data collected from IoT devices 
currently have limited integration into 
underwriting and pricing.
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Recommendations for current-day MI initiatives
We expect that successful implementation of MI-enabled systems in end-to-end 
processes will reap many productivity benefits for insurers, with the ultimate 
outcome of boosting profitability. However, for many firms there is still a long way to 
go to being fully “MI-ready”. This does not negate the positive benefit that existing, 
often small-scale, MI projects can deliver. The following are some recommendations 
to improve the likelihood of success in current initiatives.

Invest incrementally. Insurers should start with a focus on process steps amenable 
to MI, rather than attempt large-scale transformations. Successful MI-enabled 
system implementations should start with narrowly defined objectives and follow 
clear milestones rather than aim for full automation. A number of processes - even in 
higher-volume lines - can be too complex to fully automate. A good example is auto 
insurance: one accident can include several smaller claims, each of a different type 
(eg, bodily injury, vehicle damage, car rental) involving different parties and 
suppliers, and therefore requiring expert human intervention.

MI can be deployed in functions with fewer regulatory restrictions. While 
wholesale replacement of some insurance processes may require regulatory 
approval, augmenting existing processes with selective MI is possible with few 
regulatory restrictions. Important here is how an MI-enabled system is deployed. 
Many MI deployments to augment human-centric processes fail by adding process 
costs without improving overall efficiency or profitability. Involving staff in re-
engineering process discussions and introducing small deployment steps can be the 
difference between successful and unsuccessful implementation.

Figure 11 
Degree of difficulty in incorporating new data sources into processes

Source: Swiss Re Institute
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process that are amenable to MI.

Choose use cases that augment 
employee effort.
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Combine new and conventional model approaches. Some newer MI (eg, deep 
learning) methods can be used to supplement more conventional ones (eg, GLM).  
AI or ML methods may improve data curation, facilitate better process design, and 
address weaknesses in aspects of the conventional MI (eg, incorporate output from 
unstructured data.) Insurers should use simple, interpretable models as a baseline for 
AI or ML, especially in areas that are regulated. For example, a large US insurer 
acknowledged that because the industry relies so heavily on GLMs, its experiments 
with deep learning are still focused on developing a multi-variate rating plan. In this 
case, the end result was to use deep learning to develop new insights; final 
implementation incorporated these insights to improve the GLM process.25

Foster collaboration between centralised and distributed data science teams. 
Best practice programs bring uniformity across divisions. At many insurers, if an 
analytics team in one division builds a successful algorithm for a particular issue, 
there is little structure to facilitate its adaptation in other divisions. Larger insurers like 
QBE are building playbooks that all divisions can consider, including algorithms to 
accelerate claims settlements, identify fraud, improve loss reserving, and suggest 
when claims cases may become lawsuits.26

25 Trick or Treat? Application of Neural Networks in Insurance, KPMG, 10 January 2019.
26 “QBE, Unlocking the secrets to technological transformation”, Claims Magazine, April 2019,  

Use newer approaches like deep 
learning to complement more 
conventional techniques.

Centres of excellence should foster 
connections between centralised and 
local teams.

http://files-eu.clickdimensions.com/kpmgie-a168b/files/2019-01-10neuralnetworksininsurance1.0.pdf
http://www.claimsmagdigital.com/claims/april_2019?pg=31
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Innovation and new approaches 
More advanced MI techniques often require more and better data, and more 
compute power. The lack of one or both can hold back deployment of MI-enabled 
systems at enterprise scale. Often the difficulties are specific to models or 
algorithms, which in turn can (not always) be the reason for failed deployment. 
Where improvement to data quality and/or compute power is challenging, an 
alternative way to address model problems, which has been the focus of more recent 
research, is to develop a new approach less sensitive to these issues. Examples are 
reinforcement learning or ensemble modelling, such as hybrid physics-based and 
ML models. Table 3 highlights exciting areas of innovation in MI that have the 
potential to help overcome key problems in existing approaches. 

Combining physics-based models with data-driven approaches
Purely data-driven AI and ML-enabled systems are not robust. As insurers move from 
“detect and restore” to “predict and prevent”, they may find that data-driven AI and 
ML-enabled systems for complex applications are not straightforward because they 
fail to incorporate physical and scientific knowledge into learning and prediction. 
Often available data are insufficient, noisy and/or biased, which makes it even more 
important to compensate with theory-based models. Using (typically inadequate) 
data with current AI and ML algorithms leads to inconsistent results, with the 
outcome that trained models do not generalise well to out-of-sample testing. 

On the other hand, pure mathematical physics-based models may fail to capture the 
full range of complex interactions characterised by physical systems of interest to 
insurers (eg, climate, behaviour, urban resilience, health, etc.) To bridge this gap, 
some insurers and technology developers are exploring hybrid physics- and AI/ML 
algorithm-based models This hybridisation is called theory-based data science, or 
physics-based ML, or ML that incorporates the laws of physics. Newer AI such as 

With emerging understanding of how MI-enabled systems can improve data ingestion and curation, and augment 
existing analyses, there has been growing recognition of the applicability of new approaches. These include, for 
instance, hybrid physics/ML-based models and causal-inference algorithms to improve the predictive power of MI 
systems. However, failure in enterprise scale MI-system deployment is more often due to larger organisation 
constraining characteristics. To this end, insurers should focus more on trust, technology, talent and tenacity.

New and innovative MI  can improve 
existing approaches.

Table 3 
Schematic showing positive developments in MI

Source: Swiss Re Institute

Key development Challenge it is addressing

Combining physics-based 
models with ML

Improve accuracy, interpretability of MI models, while improving predictive and exception-handling 
capabilities of physics-based models. Strong applications in critical maintenance activities, early 
warning systems, etc.

Progress around using ML for 
causal inference 

More informed decision-making with higher level of confidence. Better understanding of the impact of 
interventions. Huge application in sensitive domains, like, healthcare, defence and even insurance.

Advances in visualization tools 
for decision support 

Improve interpretability and diagnosability of complex MI systems. Applications in NLP, image 
processing, etc.

Better model interpretation 
techniques 

Improve interpretability of current black box MI techniques, while improving accuracy of more 
interpretable but currently low accuracy techniques like CART.

Intelligent automation: 
Re-designing workflows  

Automated data curation, insight discovery and sharing. Model prototyping in production languages. 
Potential to save significant time on development as well as ongoing maintenance.

Privacy-preserving analytics Governments, corporations, academia all join hands to help improve weighting of model parameters and 
thus the model performance without compromising on data privacy.

Data-driven AI and ML systems often 
fail to incorporate physical and 
scientific knowledge. 

The community is exploring the 
continuum between physics-based 
and ML models.
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reinforcement learning, GANs, neuromorphic computing, and agent-based 
simulation techniques will further expand the possibilities at this hybrid intersection 
of physics-based models and MI.

Figure 12 is a two-dimensional view of the dichotomy between physics-based and 
data science models. Science theory-based models (y-axis) can have knowledge 
gaps with respect to certain processes that are either too complex to understand or 
too difficult to observe directly. At the other end of the spectrum, data-driven models 
(x-axis) use large volumes of data but are agnostic to underlying scientific theories. 
A complementary approach can take advantage of the unique ability of ML to extract 
patterns from data, while also benefiting from scientific knowledge. 

This combined approach is being experimented in areas such as predicting 
breakdowns and remaining useful lifetime for industrial systems. These are areas 
where physics-based models can be incomplete and data-driven models can be 
hampered by poor representativeness of training data. Researchers use physics-
based performance models to infer unobservable model parameters related to 
equipment health, which can be combined with sensor readings to generate a data-
driven prediction model.27

Progress in combining causal-inference tools with MI
A fundamental assumption of classical statistics and ML is that the distribution of the 
training data is the same as the distribution of the data in practice. This is often not 
the case in real life as, for example, new regulation or any other intervention can 
change the distribution of the data. A general property of causal models is that they 
are robust to such changes and more interpretable. 

27 M.A. Chao, C. Kulkarni, O. Fink, et.al. Fusing Physics-based and Deep Learning Models for Prognostics, 
Cornell University, 2 March 2020.

Figure 12 
Dichotomy between theory-based models and data science models

Note: PNN refers to physics-guided neural networks
Source: A. Karpatne et al., Theory-guided data science: A new paradigm for scientific discovery, Cornell University, 2016
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requires clear lines of communication.
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MI-enabled systems learn 
connections, but typically cannot 
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Figure 13 shows three levels in the ladder of causality. Level 1 is associational, and 
asks "how will seeing X change my belief in Y?" For instance, what does a particular 
symptom tell me about the presence of a disease. Level 2 explores questions which 
cannot be answered from past data alone. The questions address behaviour changes 
in response to interventions ("what happens to Y if I do X?"). Level 3 involves 
imagining, answering counterfactual queries like “what if I had acted differently?" 

Shifting to such a causal-inference paradigm creates more adaptive intelligence, 
which aligns with a more precise definition of AI. Computer scientist Judea Pearl's 
book from 2000 (Causality: Models, reasoning, and inference, Cambridge 
University Press, 2013) and his more recent The Book of Why (Basic Books, 2018) 
explore a collection of techniques that can be used in conjunction with various MI 
techniques to extract causal connections in contrast to just identifying associations. 
It is important to note that associations arise from almost all MI ranging from 
conventional techniques to the newer AI and ML algorithms. 

Causal inference arises from hypothesising causal relationships with a range of 
drivers in the context of directed acyclic graphs (DAGs) based on the best available 
scientific understanding.28 Then, different techniques can be used to “prune” the 
graph to distinguish causal drivers from confounders. Combined with other MI 
techniques, causal inference can be a powerful tool to improve the predictive power 
of particular models and feed into more robust risk-management systems. This 
combination follows nicely from hybridising physics-based models with newer MI 
approaches as scientific theories provide guidance as to which variable inter-
relationships should be targeted in training, fitting, or estimating relevant MI models.

Using visualisation to generate actionable insight
Even if an enterprise successfully implements an MI-enabled system, the output 
often remains restricted to discussion among the firm's data scientists. This limits the 
system's influence. Inflexible decision-making processes and immature software 
make it hard for data scientists to transform system output into actionable insights 
that decision-makers can use. In a recent survey, more than 70% of US insurers said 
they were concerned that non-data science staff did not understand AI and ML 

28 The directed acyclic graph causal framework allows for the representation of causal and counterfactual 
relations amongst variables.

Three levels of causality: seeing, doing 
and imagining.

Causal inference facilitates more 
adaptive intelligence…

Figure 13 
Levels of causality needed in insurance

Source: Swiss Re Institute
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outcomes.29 Insurers will need to develop more customised visualisation and 
decision-support tools that work for their specific needs. One seemingly counter 
intuitive recommendation is to include non-technical designers as part of the MI-
enabled system deployment team. These non-technicians should work with 
executive decision makers from project beginning, not end. Many powerful systems 
are not productively used because the output is confusing to decision makers.

Many new features were added to visualisation tools in 2019, based on well-known 
JavaScript visualisation libraries such as D3, jQuery and R. Gartner predicts that by 
2022, 40% of ML model development and scoring will take place in tools (eg, 
business intelligence (BI tools) that do not have ML as their primary goal.30 For 
instance, Microsoft has made it possible to integrate Python scripts within PowerBI, 
its popular BI tool.31 AutoML is already available in visualisation and BI tools and 
currently supports classification and regression models.32 There will likely be 
additional model types in the future, and the ability to export ML models to 
interactive computing environments like Jupyter Notebooks, facilitating model 
refinement “on the fly.” 

Progress in model explainability and interpretation techniques 
As newer MI tools demonstrate productive potential in the enterprise context, more 
emphasis is placed on “Explainable AI and ML”. That is, algorithms with higher 
accuracy levels (relevant for specific business use cases) need more explanation 
before they will be acceptable across a broader range of business contexts. 
Successful enterprise-wide and decision-critical system deployments require 
explainability and interpretability. The past years have seen progress in explaining 
complex models, such as SHAP (Shapley Additive exPlanations) values and Local 
Interpretable Model-Agnostic Explanations (LIME). Optimal classification trees are 
also being proposed to improve accuracy while dealing with the problem of 
interpretability (see Case study: Optimal Classification Trees). Whether these 
approaches are sufficient for regulators and internal governance units at insurers is 
still unclear. 

Case study: Optimal Classification Trees
Decision trees are highly interpretable and explainable to a non-technical audience. 
However, such models may lack stability. A slight change in data can cause a large 
change to tree structure, making them less appropriate for regulated areas like 
insurance pricing. Another shortcoming is that every split in the tree is decided on a 
standalone basis without considering the possible impact of future splits in the tree. 
This can lead to trees that do not adequately capture underlying characteristics of 
data sets, potentially leading to weak performance when classifying future data.

A helpful solution associated with a top-down approach is to create the tree in a 
single step (ie, jointly decide all tree nodes). Each split is therefore determined with 
complete information of all other tree splits. In 2017, Bertsimas and Dunn proposed 
a technique called optimal classification trees to improve decision-tree accuracy.33 
This technique uses mixed-integer programming (MIP) to learn optimal classification 
trees. MIP comes with a suite of off-the-shelf solvers and algorithms that can be 
leveraged to effectively prune-out the search space. 

29 LexisNexis® Risk Solutions, op. cit. 
30 Gartner Magic Quadrant for Analytics and Business Intelligence Platforms, Gartner, February 2020. 
31 “A Tour of Artificial Intelligence Features in Power BI”, blue-granite.com, 5 December 2019.
32 AutoML is a ML capability that enables developers with limited ML expertise to train models specific to 

their business needs. 
33 D Bertimas, J. Dunn, “Optimal Classification Trees”, Machine Learning, vol 106, July 2017.

Off-the-shelf business intelligence 
tools now allow for custom visuals that 
can be used to communicate model 
findings.

Today there is more emphasis on 
explainable AI and ML, especially for 
techniques with higher accuracy.

Decision Trees are interpretable but 
may have lower accuracy.

Optimal classification trees improve 
accuracy, while maintaining 
interpretability.

https://www.gartner.com/en/documents/3980852
https://www.blue-granite.com/blog/artificial-intelligence-features-in-power-bi
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Intelligent automation: re-designing workflows 
The data science vendor space has matured to cater to both expert and citizen data 
scientists to build, train, deploy and manage analytical models.34 MI techniques are 
increasingly used to simplify analytical processes such as data preparation, insight 
discovery and insight sharing. Newer AI and ML techniques still face the challenge 
that language program prototypes cannot scale at an enterprise level, but we expect 
that new developments could help overcome such obstacles. Model prototyping will 
be possible in the same AI and ML-oriented languages that are used for industrial 
grade deployment. For example, Amazon Sagemaker recently announced an open 
source library and API to prototype deep learning models in Java.35 Internal 
engineers now expect to save 30% in development time.36 

Inadequate data curation workflows continue to materially hamper successful 
deployment of enterprise MI-enabled systems. Fortunately, better tools are becoming 
available to improve existing data curation. These platforms augment collecting, 
labelling and feeding data into supervised learning models and standardised 
workflows. More sophisticated libraries and software packages allow models that are 
better able to generalise, meaning that a wider set of problems can be solved (eg, 
Tensor Flow for ML models). Even with better tool availability, the feedback is mixed: 
some platforms facilitate seamless integration across diverse tools, while others still 
struggle with a plethora of tools that do not necessarily work together.

Privacy-preserving analytics 
Given that MI-enabled system performance is often boosted with more data, 
industry players would benefit if they were to share data. That said, standard 
anonymisation protocols are not secure enough. New protocols are creating new 
opportunities. Secure multi-party contribution protocols can unlock derived analytics 
from non-public data across multiple insurance companies. These new protocols 
facilitate a higher level of data privacy protection beyond what is typical for standard 
anonymisation techniques. In this way, a consortium of insurers can contribute data 
to generate derived analytics for MI applications that would benefit all contributors 
(see Figure 15). The differential privacy techniques eliminate the possibility that even 

34 Solution Criteria for Data Science and Machine Learning Platforms, Gartner, 6 September 2019. 
35 Introducing Deep Java Library: Develop and deploy Machine Learning models in Java, Amazon Web 

Services, 3 December 2019.
36 S. Sivasubramanian, Leadership session: Machine learning, Amazon AI Amazon Web Services, 

December 2019.

Figure 14 
How techniques map with regard 
to interpretability and accuracy.

Source: D. Bertsimas,J. Dunn, Machine Learning  under a Modern Optimization Lens, Dynamic Ideas, 2019
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the researchers and data engineers working on the pooled data can look back into 
individual contributions while still facilitating more sophisticated MI.

Figure 14 shows how once the model has been instantiated, the parameters and 
weights are pushed out (in steps 1 and 2) through a web service to individual 
insurers, which each run the global model on their local data (eg, claims records), to 
find out how accurate the master model is (step 3).  After this is completed, each 
insurer (step 4) offers feedback and shares the findings or learned gradients (ie, what 
is different between the two models). This feedback is combined across insurers, 
and updated weights are submitted to the federated services, and reflected in the 
global model (steps 5 and 6). The cycle can continue until a certain level of accuracy 
is obtained in the master model. 

Trust, technology, talent and tenacity 
Model-related problems are not the only reason for failure in deployment of MI-
enabled systems at enterprise scale. More often, organisational constraints such as 
poor use case planning, lack of properly trained staff and poor communication are 
the sources of failure. In the insurance sector, a change in mindset could help. 
Insurers need to better understand the value that MI-enabled-systems can deliver 
from an end-to-end, enterprise perspective. Small-scale pilot projects for emerging 
technologies make sense as part of an initial R&D project or targeted assessments. A 
tendency among insurers thereafter has been to launch enterprise-wide deployment 
of the pilot, without due consideration of other non-technology design-related 
issues. 

To successfully transform their enterprises with MI-enabled technology, we 
recommend that insurers stop relying on proof-of-concept, small-scale pilots of 
model/algorithm approaches. They also need to focus on the salient, non-model 
characteristics of end-to-end enterprise deployment: trust, technology, talent and 
tenacity (see Table 4).

Figure 15 
Federated learning to achieve privacy preserving analytics

Source: Swiss Re Institute

a) Train 
model 
locally with 
local data
b) Calculate 
loss
c) Back-
propagate
gradients 
locally

Global model updates

Local data

Insurer 1
local

ML Model

Local data

Insurer 2
local

ML Model

Local data

Insurer 3
local

ML model

Edge/
federated
compute
service Master

parameter
server

Central compute
resources

3
a) Send model 

and initial parameters
b) Split data between nodes

2

Share learned gradients with
master parameters server
(no transfer of local data)

4

Share updated
global model version

and parameters (weights)

1

Average the submitted
gradients from many
node/edge devices

5

Continue
federated training loop

7

Update
the master weights

6

Master models leverage local data at 
each insurer to help them learn from 
each other without sharing data.

Often organisational constraints are 
the reason for failure in the 
deployment of MI-enabled systems.

Insurers should also focus on non-
model issues holding back wider 
adoption.



Swiss Re sigma No 5 /2020 25

Trust: develop an algorithmic risk and digital ethics framework 
Life-altering decisions can be automated via algorithms, and embedded biases 
within algorithms may often be inadequately monitored and documented. This can 
result in liability for companies using decision-support algorithms that incorporate 
bias (in most cases, unintentionally) should victims choose to litigate. Seven out of 
10 US carriers are already concerned about bias in ML models.37 Even if an MI-
enabled-system outcome is solely or mostly responsible for undesired 
consequences, “the algorithm did it” is not an acceptable excuse. In a survey carried 
out in 2019, nearly 50% of firms using MI solutions across sectors said they have a 
formalised framework to consider ethical use, bias risks, and trust implications; 25% 
had created a senior management position specifically to ensure compliance.38 

There is also scope for automated technology-based solutions that detect bias and 
generate risk scores for algorithms, which allow insurers to assess the malpractice 
risk of specific algorithms. Insurance solutions can be considered to protect 
companies using such algorithms against liabilities resulting from embedded bias. 
Insurers should have a stronger voice in the societal debate about questions of 
fairness in algorithmic decisions and join forces with researchers to address these 
issues (eg, 'FAT machine learning community39).  In the last decade, academics have 
published several definitions of fairness, not all of which can be achieved at the same 
time. Since creating a generalised state of fairness is not feasible, insurers may need 
to choose which conditions to keep and which to discard.

Technology: balance internal versus external expertise
IT support for MI will be especially challenging as technology teams try to manage 
the balance between: (1) running the business in the face of increasing requests for 
various IT services, along with; (2) innovation and research. More than half (59%) of 
CIOs and IT decision makers surveyed recently were unable to deliver on all their 
projects in 2019, creating a backlog for 2020.40 As the range of MI-related offerings 
continues to grow, IT units will need to modify procurement approaches designed for 
buying traditional software to reflect MI procurement. For example, insurers may 
need to restrict agreement terms to shorter period (eg, no more than three years to 
protect from lock-in.41) There will need to be more emphasis on tool/system flexibility 

37  LexisNexis® Risk Solutions, op. cit.
38  Global survey of 2 473 firms that use AI solutions. IDC Survey Finds Artificial Intelligence to be a 

Priority for Organizations But Few Have Implemented an Enterprise-Wide Strategy, IDC, 8 July 2019.
39 Fairness, Accountability, and Transparency in Machine Learning, FAT/ML, see https://www.fatml.org
40 New report shows 3 out of 4 organizations expect negative revenue impact if they don't digitally 

transform in next 12 months, MuleSoft, 13 February 2020. 
41 Lack of Focus on AI Licensing Will Result in Higher Costs, Risks and Long-Term Headaches, Gartner, 

11 September 2019.

Table 4 
Non-model considerations for enterprise-scale of MI-enabled systems

Source: Swiss Re Institute

Key findings Implications for the current model Outlook

Trust: Develop an algorithmic risk and digital 
ethics framework 

Better equip MI-enabled systems against 
risks, eg, adversarial attacks

Balance different definitions of fairness and 
incorporate self-monitoring into MI-enabled 
systems from the design phase 

Technology: Balance internal versus 
external expertise

Understand how procuring MI differs from 
traditional software to reduce risks and 
maximise ROI

Develop approaches to harmonize 
fragmented technologies.

Talent: Develop talent and skills Identify how MI can complement current 
actuarial-science- based approaches

Encourage all staff to learn new MI-related 
tools and leverage citizen data scientists

Tenacity: Foster a dynamic tech-informed 
culture; engage with regulators

Use sandbox approaches to test MI at scale Educate regulators. Keep humans in the 
loop

Insurers must gain deeper 
understanding of the consequences 
MI may have on the services they 
provide. 

Existing frameworks were not 
designed to govern behaviour by 
large-scale algorithmic systems.

With increasing commoditisation of 
MI categories, insurers need a 
detailed MI procurement and 
knowledge-transfer strategy.

https://www.idc.com/getdoc.jsp?containerId=prUS45344519
https://www.idc.com/getdoc.jsp?containerId=prUS45344519
https://www.prnewswire.com/news-releases/new-report-shows-3-out-of-4-organizations-expect-negative-revenue-impact-if-they-dont-digitally-transform-in-the-next-12-months-301004296.html
https://www.prnewswire.com/news-releases/new-report-shows-3-out-of-4-organizations-expect-negative-revenue-impact-if-they-dont-digitally-transform-in-the-next-12-months-301004296.html
https://www.gartner.com/doc/3957263
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and interoperability. Insurers will also need to create and execute knowledge-transfer 
plans to ensure continuity between external providers and their own staff, both in IT 
and the business.42 

Talent: develop talent and skills
Lack of sufficient staff to analyse data is among the three biggest challenges 
preventing insurers from becoming more data-driven, according to a recent survey.43 
Awareness of MI is growing among actuaries. MI is endorsed at prominent actuarial 
conventions, with papers on how actuarial science can incorporate deep learning in 
areas such as mortality modelling, claims reserving, telematics analysis and non-life 
pricing. Still, retaining MI talent remains a challenge. Insurers invest in skills 
development programmes for employees, but many struggle to create near-term 
opportunities and incentives to apply MI in a way that interests skilled MI developers 
and data scientists. About one-sixth of respondents in a survey cited difficulty in 
hiring and retaining people with AI skills as a significant barrier to broader AI 
adoption in their organisation.44

Tenacity: a dynamic, tech-informed culture and engage with 
regulators 
Beyond investing in foundational MI-enabled capabilities, insurers must focus on 
high-level business workflows and opportunities productively transformed by these 
new technologies. In recent years, many insurers have funded proofs of concept and 
pilots in the MI space. These efforts provide preliminary guidance but do not 
transform business. Going forward, key project components for making MI-enabled 
systems productively transformative go well beyond the technology. They include 
enterprise technology architecture design, business workflow re-engineering, co-
creation with executives data on visualisation, and extensive change management 
programs. Having business people involved throughout the identification, testing, 
evaluation, and implementation process is key to achieving success.

Regulatory risks regarding tech-linked innovation in insurance present challenging 
hurdles. The risks mostly centre on questions of data management and use. The 
General Data Protection Regulation (GDPR) in Europe emphasises important 
questions for managing data privacy, which is particularly relevant for MI-enabled 
systems, which often merge and mix different data sources for risk assessment. 
Some issues require more development and discussion such as complying with 
GDPR principles focused on “use for legitimate purposes only” and conditions for use 
in “high risk” cases (eg, medical and health, profiling). 

Further, restrictions on cross-border data transfers can also impede development 
and application of cross-border solutions, and slow regulatory approval of new tech 
components like cloud solutions. Given the complicated and subtle nature of many 
MI-enabled solutions, inadequate understanding of MI possibilities and drawbacks 
could slow industry adoption. More sandbox efforts – particularly experiments at 
enterprise scale – are required to overcome regulatory barriers and foster a deeper 
understanding related to data privacy management and MI capabilities among 
regulators and insurance executives.

42 Gartner, op. cit.  9 February 2018.
43 Willis Towers Watson, 25 February 2020, op. cit.
44 AI adoption in the enterprise 2020, O’Reilly, 18 March 2020.

Attracting and retaining people with 
MI skills remains a major challenge for 
insurers.

Involving the business and executives 
throughout the MI development 
lifecycle is key.

Some issues require more discussion, 
such as complying with regulatory 
requirements.

Sandbox approaches could help 
overcome barriers to adoption of 
enterprise-scale MI in insurance.
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Despite significant advances in MI-enabled image recognition and customer 
analytics for example, productive, enterprise-scale transformation based on MI-
enabled systems in the insurance sector has proven elusive. Some trends have a 
long arc and will most likely continue current trajectories such as integrating 
computer vision into underwriting systems; other shorter-term trends like semi-
automating fragmented data curation systems could change quite quickly. 

Data have become paramount in any strategy to fully exploit the potential of MI in 
insurance. While longer time series of structured data and efforts to find novel data 
continue to be an important component of this narrative, unstructured data (eg, text, 
audio, and video) have become a new opportunity not yet fully exploited. 
Incumbents with proper tools and organisation will differentiate themselves as better 
curated and novel data become a component of their competitive edge.

Newer MI in the AI and ML spaces are among the over-hyped technology areas that 
have yet to be implemented in a materially profitable and transformative way within 
the insurance value chain. For example, chatbots powered with the best in natural 
language processing are still rolled out as the solution to confusing menu systems 
and as a tool to reduce the size of call centres. The predictions for customer support 
transformation were wildly unrealistic. This said, the collection of tools available to 
insurers will continue to evolve. Much work remains in determining the specific tools 
to use in these spaces. 

An important consideration is the difference between targeted proof-of-concept 
value and successful enterprise deployment. Insurers and their technology partners 
will benefit from more investment and experimentation with MI at the enterprise 
scale. Many insurers already experiment with MI in narrow contexts. The failures to 
date result from the inability to scale profitably these narrowly focused experimental 
projects. Everyone involved in enterprise MI deployment should accept that project-
completion timelines will continue to be much longer than most executives expect.

Regulatory compliance will continue to be a critical component of any strategy to 
leverage data and digital tools. One area in this context that will be particularly 
onerous for any firm expanding its use of data, particularly in the area of 
personalisation and customisation, is data privacy. New regulations will continue to 
come at a fast and furious pace, furthering the advantage of large insurers already 
equipped to manage compliance. Cultural norms, attitudes with respect to data 
privacy, and regulation differ substantially across regions. Multi-national insurers that 
robustly address this heterogeneous, and often fragmented regulatory landscape in 
their MI implementations will differentiate themselves from competitors.

MI-enabled systems have profitably transformed other industries. This promise 
continues to drive MI-related investments in the insurance industry. Executives, 
technology architects, project managers, and analysts must shift their focus from 
technology development to enterprise transformation to realise this business-value 
potential. Key success factors include building trust with clients and regulators, 
implementing enterprise-oriented technology, fostering cultures that retain suitable 
MI-trained talent, and engendering hurdle-clearing tenacity. 

Insurers must shift focus from 
technology development to enterprise 
transformation to realise the potential 
of MI-enabled systems.

Investments in data collection and 
curation capabilities will be a key 
differentiating factor.

Figuring out which specific tools are 
realistic and deserve investment is 
also critical.

Insurers should accept that project-
completion timelines will be longer 
than many expect.

Effective MI deployment will rely on a 
range of factors including cultural and 
regional attitudes towards privacy and 
regulation.

Building “trust” will encompass how 
data are managed, and how customer 
needs are met.

Conclusion
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